Independence in graphs with maximum degree four
نویسندگان
چکیده
منابع مشابه
On the Independence Number of Graphs with Maximum Degree 3
Let G be an undirected graph with maximum degree at most 3 such that G does not contain any of the three graphs shown in Figure 1 as a subgraph. We prove that the independence number of G is at least n(G)/3 + nt(G)/42, where n(G) is the number of vertices in G and nt(G) is the number of nontriangle vertices in G. This bound is tight as implied by the wellknown tight lower bound of 5n(G)/14 on t...
متن کاملThe independence number in graphs of maximum degree three
We prove that a K4-free graph G of order n, size m and maximum degree at most three has an independent set of cardinality at least 1 7 (4n−m− λ− tr) where λ counts the number of components of G whose blocks are each either isomorphic to one of four specific graphs or edges between two of these four specific graphs and tr is the maximum number of vertex-disjoint triangles in G. Our result genera...
متن کاملk-forested choosability of graphs with bounded maximum average degree
A proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. A graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $G$ such that each vertex receives a color from its own list. In this paper, we prov...
متن کاملTransversals and Independence in Linear Hypergraphs with Maximum Degree Two
For k > 2, let H be a k-uniform hypergraph on n vertices and m edges. Let S be a set of vertices in a hypergraph H. The set S is a transversal if S intersects every edge of H, while the set S is strongly independent if no two vertices in S belong to a common edge. The transversal number, τ(H), of H is the minimum cardinality of a transversal in H, and the strong independence number of H, α(H), ...
متن کاملk-forested choosability of graphs with bounded maximum average degree
a proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. a graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $g$ such that each vertex receives a color from its own list. in this paper, we prov...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series B
سال: 1984
ISSN: 0095-8956
DOI: 10.1016/0095-8956(84)90058-3